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ABSTRACT 

 The study of whole microbial communities through RNA-seq, or metatranscriptomics, offers a 

unique view of the relative levels of activity for different genes across a large number of species simulta-

neously. To make sense of these sequencing data, it is necessary to be able to assign both taxonomic and 

functional identities to each read. Such assignments allow biochemical pathways to be appropriately allo-

cated to discrete species, enabling the capture of cross-species interactions. Currently, these annotation 

tasks are commonly performed by looking for long matching subsequences. Such approaches are depend-

ent on homology, and are challenged by highly diverse species. Alternative methods, based on composi-

tional analysis of shorter fragments, have not yet demonstrated comparable performance. Here we intro-

duce a novel program for generating taxonomic assignments, called Gist, which integrates information 

from a number of machine learning methods and the Burrows-Wheeler Aligner. Uniquely Gist optimizes 

weightings of methods for individual genomes, facilitating high classification accuracy on next-

generation sequencing reads. Further innovations of value to the field include the ability to incorporate 

prior knowledge about taxon abundances as well as the return of multiple assignments, including to parent 

taxa. We validate our approach using a synthetic metatranscriptome generator based on Flux Simulator, 

termed Genepuddle, and on real data. Our results demonstrate the capacity of composition-based tech-

niques to accurately inform on taxonomic origin without resorting to longer scanning windows that mimic 

alignment-based methods, reducing dependence on reference genomes. Gist is made freely available un-

der the terms of the GNU General Public License at compsysbio.org/gist. 
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INTRODUCTION 

Recent advances in high-throughput sequencing are profoundly transforming our understanding 

of the relationship between complex microbial communities (microbiomes) and their environments. In the 

context of human health, it is increasingly apparent that the composition of the intestinal microbiome has 

a significant impact on many diseases including type I diabetes, inflammatory bowel disease (IBD), obe-

sity, and rheumatoid arthritis (Angelakis et al. 2015; Greenblum et al. 2012; Ley et al. 2005; Bervoets et 

al. 2013; Tong 2015; Loh and Blaut 2012; Kostic et al. 2015; Hara et al. 2013). Typically, studies of 

complex bacterial communities have largely relied on marker gene (e.g. 16S rRNA) surveys, which yield 

only limited functional insights (McHardy et al. 2007). With the recognition that multiple combinations 

of microbial taxa can confer similar functional outputs, efforts have begun to define microbiome function, 

in addition to the taxa responsible, through untargeted DNA or RNA sequencing (metagenomics and 

metatranscriptomics respectively) (Xiong et al. 2012; Damon et al. 2012; Lesniewski et al. 2012; Poulsen 

et al. 2013; Gosalbes et al. 2011). For example, key fermentation products of abnormal bacterial metabo-

lism in the human gut (short-chain fatty acids, especially propionic acid) produced by certain Clostridia, 

Desulfovibrio, and Bacteroidetes species, have been shown to trigger neuroinflammation in a mouse 

model, resulting in behavioral changes consistent with autism spectrum disorders (MacFabe 2012; Frye et 

al. 2016). 

A major focus in the analysis of these complex datasets is the accurate determination of the taxa 

present. Beyond defining taxa responsible for critical functions, taxonomic assignments permit binning of 

reads that can help with sequence assembly, allowing the generation of longer genomic scaffolds or tran-

scripts while minimizing the generation of chimeras (Kumar and Blaxter 2010; Kumar et al. 2013; Li et 

al. 2012). However, due to the vast diversity of microbes encountered in microbiomes, taxonomic as-

signment of sequence reads remains challenging. 

Three general categories of techniques for assigning taxonomic labels have been developed: phy-

logenetic, alignment- or similarity-based, and compositional (Bazinet and Cummings 2012). Phylogenetic 
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strategies, which exploit models of evolutionary relationships, are computationally intensive and rely on 

the reprocessing of results from alignment and/or composition based methods to quantify the distance 

between the assigned reads and the reference data (Berger et al. 2011; Munch et al. 2008). In alignment-

based strategies, the results of a sequence similarity search method such as BWA (Li and Durbin 2009) 

are used to map reads directly onto known reference sequences (e.g. genomes or sets of known tran-

scripts). Due to the reliance on databases that represent only a fraction of bacterial diversity, these meth-

ods perform poorly for data containing taxa that have not previously been well-sampled and can also be 

confounded by lateral gene transfer events (MacDonald et al. 2012). Compositional methods offer an al-

ternative. Typically, such methods count the frequencies of short fragments of reads, called k-mers, using 

a sliding window of some preset length n to scan either the nucleotide or amino acid content of a given 

reference sequence. These counts are then used to generate k-mer profile distributions yielding a position-

independent summary of sequence content against which k-mer distributions of sequence reads can be 

compared and used for assignment. This process is generally more robust, as it can detect short motifs of 

diagnostic relevance out of context, such as pathogenicity markers (Rosen et al. 2008). A number of ma-

chine learning algorithms have been applied to perform composition-based assignment including: naïve 

Bayes (NB; (Rosen et al. 2008)), k-means clustering (Kelley and Salzberg 2010), hidden Markov models 

(HMM; (Brady and Salzberg 2009)), support vector machines (SVM; (McHardy et al. 2007; Patil et al. 

2012)) and Gaussian-kernelized k-nearest neighbors (kNN; (Diaz et al. 2009)). 

Despite their ability to overcome limitations in taxonomic sampling, current taxonomic classifiers 

based on compositional approaches are still limited in their ability to deal with problems involving large 

numbers of species and can be sensitive to sequencing errors (Vervier et al. 2016). A further issue with 

current implementations of these algorithms lies in their objective of assigning reads to distinct taxa, 

which becomes challenging when a read cannot be unambiguously assigned to a single genome. Such 

ambiguity typically arises when a phylogenetic branch is under sampled relative to the rest of the taxa in 

the database, a significant challenge with microbiomes. Finally, genome-specific biases in sequence com-
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position suggest that no single algorithm will yield optimal results across all genomes, with different al-

gorithms likely to perform better for certain taxonomic groups (Brady and Salzberg 2009). To overcome 

these challenges, ensemble methods that combine several methods offer the potential for improved classi-

fication performance. For example, WEVOTE combines predictions from several tools to predict taxon 

assignments (Metwally et al. 2016), and Phymm (Brady and Salzberg 2009) use combinations of one sta-

tistical model under several different weightings. 

Here we present a new ensemble classifier, Gist, which uses a predominantly Bayesian frame-

work to integrate predictions from a number of complementary methods. Uniquely, Gist establishes an 

initial set of weights for each method, specific to each genome in its reference dataset. This weighting 

optimizes the ability of the combined set of methods to associate sequence reads to a specific genome, 

achieving high-quality results with much smaller k-mers than in previous implementations of composi-

tion-based approaches. To avoid errors due to ambiguities in classification, probabilistic output generated 

by Gist allow reads to be assigned to appropriate taxonomic ranks. The use of a Bayesian model, addi-

tionally allows Gist to incorporate prior knowledge about the distribution of data (e.g. based on known 

16S rRNA abundance information). We validate our approach using synthetic data, as well as meta-

transcriptomic data from a previous study of the intestinal microbiome associated with a non-obese dia-

betic (NOD) mouse model. The performance of Gist is compared against five established short-read clas-

sifiers, all developed for use with metagenomic data: Naïve Bayes Classifier, which introduces a Bayesian 

framework to model genomic k-mers (Rosen et al. 2008) with a high-dimensionality Bernoulli distribu-

tion; Kraken, which modifies this model by implementing a novel root-to-leaf approach based on map-

ping k-mers in the context of a taxonomic tree (Wood and Salzberg 2014); CLARK, which iterates on the 

NBC model by instead introducing reduced sets of k-mers (Kumar et al. 2013);  Centrifuge (Kim et al. 

2016) and Kaiju (Menzel et al. 2016), which are primarily alignment-based algorithms which look for 

maximum-length, exact-sequence matches (MEM) in nucleotide and peptide space respectively, both em-

ploying a Burrows-Wheeler transform with Ferragina and Manzini’s FM–index (Ferragina and Manzini 

Gist – page 5 of 28 



2005) for efficiency, although Kaiju additionally features a more traditional, more fault-tolerant ‘Greedy’ 

alignment mode. While our focus is on metatranscriptomic data, with additional modification we propose 

that Gist, with its improved performance and reduced dependence on exhaustive genome databases, rep-

resents an effective solution to the taxonomic classification of short read metagenomic datasets, either by 

binning prior to assembly, or where low coverage limits assembly options. 

RESULTS 

Gist – an ensemble taxonomic classifier for analyzing metatranscriptomic sequence datasets 

We present Gist (Genome Identification of Short Transcripts), an ensemble classifier that com-

bines the output of the Burrows-Wheeler Aligner (BWA) (Li and Durbin 2009) and four classification 

methods used for examining k-mer composition: Gaussian naïve Bayes (NB), nearest neighbor search 

(1NN), a Gaussian mixture model (GMM), and a novel technique, the expected co-delta correlation 

(ECC) to assign taxonomic labels to metatranscriptomic read data. Each of the four classifiers we imple-

mented is run with both amino acid and nucleotide information, and can be configured independently to 

use a different k-mer length from the other models, resulting in 8 adaptive elements, plus input from 

BWA and up to two per-strain priors, for a total of 11 components.  

Once models have been built, labeled training data is used to determine the reliability of each of 

the methods for each of the N classes, yielding a 9×N table of weights. These are learned using a single-

layer neural network, in a technique called ensemble averaging. Of the components, only the outputs of 

NB and GMM models are truly generative probabilities, so this training process is important in re-scaling 

the outputs of the other models into comparable ranges. The optimal orientation of each fragment in nu-

cleotide space (forward vs. reverse complement) is determined by scoring sequences in both directions 

against all classes, and keeping scores for the direction that yields the higher overall score, analogous to 

selecting for maximum likelihood in a fully Bayesian framework. 
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To classify reads, data is analyzed in two passes; the first pass uses only the fastest methods to 

reduce the number of candidate genomes to a manageable size, and then the second pass uses all methods 

to determine final scores for the most likely hits. A user-configurable system of quotas and thresholds can 

be used to produce multiple results if so desired. 

These final scores are expanded taxonomically before output. After the most likely genomes have 

been identified for a given read, their scores are compared to the scores found in neighboring strains using 

a one-tailed Student’s t-test relative to the mean distribution of other members of the species. If it is found 

that the t-test for the selected taxonomic label’s score is insufficiently distinct from that of its siblings, 

then the parent taxonomic unit, e.g. species, will be returned instead. This process can repeat recursively 

all the way up to the level of order depending on user-configurable thresholds, sacrificing exactness for 

improved confidence. 

See Figure 1 for an overview of the pipeline. More detail about the ensemble components is pro-

vided in the Materials and Methods section. 

 

Comparison of Gist against other taxonomic classifiers using simulated datasets 

To assess Gist’s performance, we first considered its ability to accurately assign taxonomic labels to 

simulated metatranscriptomic datasets consisting of short sequence reads relative to five state of the art 

classifiers, NBC (Rosen et al. 2008), Kraken (Wood and Salzberg 2014), CLARK (Ounit et al. 2015), 

Centrifuge (Kim et al. 2016), and Kaiju (Menzel et al. 2016). To evaluate classifier performance, we used 

a previously  published mouse gut microbiome (Xiong et al. 2012) to produce simulated training and test 

datasets based on taxonomic profiles derived from 16S rRNA survey data. In this study, non-obese, dia-

betic (NOD) mice were reared under germ-free conditions and initially colonized with altered Schaedler 

flora (ASF). ASF is considered to consist of a community of 8 strains of bacteria commonly found in the 
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murine gut (Table 1; (Wymore Brand et al. 2015)), for which genomic sequences are available (Wan-

nemuehler et al. 2014), providing a useful dataset for benchmarking purposes. 

Table 1. Taxa in the Altered Schaedler Flora (ASF). 

Taxon ID* Name 
97138 Clostridium sp. ASF356 
97137 Lactobacillus sp. ASF360 

1235801 Lactobacillus murinus ASF361 
1379858 Mucispirillum schaedleri ASF457 
1235802 Eubacterium plexicaudatum ASF492 
1378168 Firmicutes bacterium ASF500 

84086 unclassified Firmicutes sensu stricto (miscellaneous) 
97139 Clostridium sp. ASF502 

1235803 Parabacteroides sp. ASF519 
* As defined by the National Center for Biotechnology Information (NCBI) 

Analysis of the 16S rRNA survey data previously generated for this mouse gut dataset produced a 

large inventory of candidate matches of diverse species within the orders of the expected strains; samples 

from the top 25 genera, plus one clade known to be present but not represented in the 16S data, were in-

cluded in the pool of genomes used. The result was a dataset consisting of a total of 295 genomes (repre-

senting individual strains) taken from the NCBI FTP server, many of which were still in the draft or as-

sembled contig stage of processing at the time of collection (Table 2 and Supplemental Table S1). The 

rRNA removal treatment appeared to have been biased against the phylum Bacteroidetes, resulting in the 

complete removal of Parabacteroides from the data. This resulted in a deficiency in the constructed data-

base which was amended by manually adding a single strain of Parabacteroides. This illustrates the im-

portance of careful 16S curation, and how rRNA removal products can be biased towards certain taxa. 

Table 2. Taxa in the simulated mouse dataset. 

Genus Strains 
Actinomadura 3 

Aerococcus 2 
Anaerostipes 3 

Bacteroides 9 
Basfia 1 

Blautia 2 
Brevibacillus 6 

Brevibacterium 2 
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Butyrivibrio 2 
Dorea 3 

Enterococcus 11 
Eubacterium 7 

Exiguobacterium 3 
Glaciibacter 1 
Idiomarina 5 

Lachnoanaerobaculum 2 
Lactobacillus 52 

Leifsonia 2 
Mannheimia 3 

Microlunatus 1 
Moorella 1 

Mucispirillum 1 
Paenibacillus 9 

Parabacteroides 1 
Pelotomaculum 1 

Peptostreptococcus 3 
Propionibacterium 14 

Roseburia 5 
Staphylococcus 53 

Streptococcus 79 
Thermaerobacter 2 

Thermomonospora 1 
 

Simulated datasets of 100 bp reads were generated using a novel pipeline Genepuddle from this 

pool of 295 strains. Genepuddle is more suitable for metatranscriptomic experiments than the widely-used 

synthetic metagenomic read generator, MetaSim (Richter et al. 2008), because it is based on Flux Simula-

tor (Griebel et al. 2012), a tool that accounts for biases in sequencing errors, read lengths and abundance 

distributions associated with RNA sequencing, rather than DNA sequencing. Two synthetic datasets were 

produced: an unbiased dataset, with equal counts for each strain, and a biased dataset, with abundances 

derived from the 16S rRNA count data described above, to reflect differences expected in real data. Unbi-

ased and biased test datasets consisted of 737,500 reads (2,500 per strain) and 85,990 reads, respectively. 

A replicate of the unbiased dataset was used as training data for the ensemble’s weights according to the 

method described previously; although genomic sequences can be used directly, this bootstrapped data 

better approximates real, unassembled input data. 
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To evaluate each classifier’s output on the synthetic data, we used a novel tool, that we called 

Lincomp, which uses NCBI-defined phylogenetic relationships to report accuracy at the lowest supported 

taxonomic rank. Thus if a classifier assigns a read to the wrong species but the correct genus, it is consid-

ered reliable at the genus level for that read. For both unbiased and biased datasets, Gist consistently out-

performed CLARK and Kraken across all levels of noise in terms of being able to accurately assign reads 

at the level of genus or higher (Figure 2). Kaiju and Centrifuge performed more strongly below the genus 

level on the biased dataset. Kraken and CLARK both aim to improve on NBC’s running time by database 

pruning and through the use of hashing methods. While CLARK maintains high precision, in terms of 

strain assignments, both of these approaches decline in performance proportionately to the level of noise 

present in the data, as their comparatively long and error-intolerant k-mers (both default to 31 nt) are una-

ble to overcome sequence polymorphisms introduced by our error model, a significant concern described 

by CLARK’s authors as limited sensitivity (Ounit and Lonardi 2016). Centrifuge and Kaiju show more 

resilience to small levels of noise, when the interval between corrupted nucleotides is high, but like 

CLARK and Kraken, they face a steep drop-off when the sequences have diverged by 12% or more, at 

which point all four methods identify a significant number of reads as ‘unclassifiable.’ 

 

Per-genome weighting of methods optimizes discrimination between taxa  

During classification, each of the nine methods shown generates a score, which is weighted and 

summed to produce the final class-read score. The weights used reflect the contrastive balance necessary 

to distinguish each genome’s reads, as well as a representation of how well each element of the ensemble 

models each genome. To illustrate how weights help distinguish between genomes, we performed a hier-

archical clustering of weightings assigned based on the simulated mouse dataset (Figure 3A). 

Focusing on the peptide naïve Bayes classifier, we further show profiles of six representative ge-

nomes (Clostridium difficile 630, Streptococcus agalactiae A909, Lactobacillus crispatus ST1, Esche-
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(A) Clustered neural network weights for each genome 

 

(B) Peptide dimer frequencies in selected genomes illustrate key differences in usage 

 

(C) Peptide codelta visually demonstrates taxonomic relationships 
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Figure 3. Genome features. Unique features of genomes picked up in different ways. (A) 
Weights as learned by the neural network for a human enteric dataset, showing no clear internal 
structure derived from taxonomy. The data were clustered using Spearman rank correlation with 
complete linkage. Weights are shown normalized, as the genomes have highly variable total 
weight (from 10–5 to 10–1.) (B) Comparison of the average peptide pair counts per gene for 
select strains, demonstrating the variety visible between them. (C) Codelta comparisons. Three 
firmicute strains, showing strong taxonomic correlation in their similarity. Blue cells show a 
positive correlation between pairs of amino acid dimers, whereas red cells show a negative 
correlation. (D) Codelta graph for random genomes with the same GC content as the 
Candidatus Carsonella rudii, E. coli, and M. phosphovorus genomes, illustrating the relationship 
between sequence complexity and environment.



richia coli str. K-12 substr MG1655, Moorella thermoacetica ATC 39073,  Microluntaus phosphovorus 

NM-1T). These indicate the frequency of each dimer averaged across the population of each genome’s 

genes, e.g. the peptide dimer LeuArg is occasionally found in C. difficile 630 M, but prominent in Micro-

lunatus phosphovorus NM-1T. 

 The learned profiles used by other methods also reveal key differences between genomes. Ex-

pected codelta correlation (ECC) is a distance metric novel in the Gist model, which complements naïve 

Bayesian methods by considering the rates of co-occurrence of each pair of k-mers in a given genome. To 

show how peptide dimer correlations change between genomes, we generated codelta tables for six repre-

sentative genomes. Banding patterns associated with three firmicutes (S. agalactiae A909, L. crispatus 

ST1, and C. difficile 630) reveal similar patterns of dimer co-occurrence reflecting close taxonomic rela-

tionships (Figure 3C). This translates to ECC scores of 1.18, 1.77, and 1.92 between S. agalactiae A909 

and L. crispatus ST1, S. agalactiae A909 and C. difficile 630, and L. crispatus ST1 and C. difficile 630 

respectively. Conversely, comparisons of E. coli MG1655 with two atypical genomes: Carsonella rud-

dii—a symbiont of psyllids (plant lice) with a genome of only 160 kilobases (Nakabachi et al. 2006); and 

Microlunatus phosphovorus—a chemoorganotroph notable for lacking several pathways typical of other 

Actinobacteria (Kawakoshi et al. 2012) reveal distinct banding patterns of dimer co-occurrence resulting 

in ECC scores that provide greater discrimination between these three genomes (11.70, 2.72, and 13.76 

for E. coli MG1655 and Carsonella ruddii, E. coli MG1655 and Microlunatus phosphovorus, and Car-

sonella ruddii and Microlunatus phosphovorus respectively; Figure 3D). Interestingly, further compari-

sons between these three genomes and random noise matrices generated with the same GC compositions, 

reveals greatest divergence with Carsonella ruddii (ECC = 105.85), suggesting a strong selective pressure 

for the reduced amino acid complement perhaps associated with more limited functionality as might be 

expected for a symbiont. 
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Comparison of Gist against other taxonomic classifiers in the absence of reference genome datasets 

In our initial benchmarking, we noted that Gist’s accuracy was similar to NBC. However, given 

this benchmarking was based on reference genomes that were included in the training data, we might ex-

pect that methods dependent on sequence similarity would yield accurate assignments. Here we examine 

the performance of the methods in the context of environmental samples for which reference genomes 

may not be available. For our test dataset, we exploited the same mouse colon study as above, however, 

rather than base this analysis on simulated data from the 295 genomes identified through 16S rRNA anal-

ysis, we instead analyzed 175,884 reads of 76 bp generated from three metatranscriptomic datasets, des-

ignated 501, 502 and 504 (Xiong et al. 2012), using the classification model trained from the synthetic 

community experiment, above. The datasets correspond to three biological replicates from three mice 

with RNA libraries prepared using similar methods. To evaluate algorithm performance, the combined 

outputs of three aligners (BWA (Li and Durbin 2009), BLAT (Kent 2002), and BLASTN (McGinnis and 

Madden 2004)) were used to align reads to the more recently sequenced genomes of the ASF community 

(Wannemuehler et al. 2014), only two strains of which were included in the set of 295 genomes used for 

training); the results are summarized at the bottom of Figure 4B. Again, we used our in-house tool Lin-

comp to evaluate accuracy of taxonomic assignments with respect to this gold standard.  

Figure 4 reveals that Gist demonstrates a significant improvement in performance relative to 

CLARK, Kraken, and Centrifuge. Although the latter three classifiers obtained similar levels of perfor-

mance at the strain level to Gist, Kaiju, and NBC, each was able to classify less than 10% of each dataset, 

with the vast majority of sequence reads annotated as unclassifiable (Figure 4A). Conversely, NBC, Kaiju 

and Gist exhibited much greater success in identifying taxonomically related sequences belonging to the 

293 strains present in the training set that were not identical to ASF strains. Furthermore, Gist improved 

over the other methods by correctly annotating ~70% reads at the level of order or better, compared to 25-

30% for NBC (with NBC being able to classify an additional 10-12% at the phylum level) and 15-30% 

for Kaiju in either running mode. Examination of specific taxonomic assignments revealed that Gist at-
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tributes over 90% of the reads to the genus Bacteroides, compared to only ~12-15% for NBC (Figure 4B). 

While mapping to ASF strains suggests ~70-75% of reads should map to Parabacteroides sp. ASF519. 

Given that P. distasonis was included in the training data and that neither NBC nor Gist assigned more 

than a few hundredths of the data to the genus Parabacteroides, these results suggest that Parabac-

teroides sp. ASF519 likely has a quite dissimilar gene complement to that of P. distasonis, and may be 

misclassified. These results are reflected in Figure 4C, where we note that both Gist and NBC appear to 

correctly annotate the majority of the 117,528 reads mapped to the P. sp. ASF519 genome to either the 

order or phylum level. Of the sequences belonging to the M. schaedleri ASF457 genome, both Gist and 

NBC correctly assign ~3/5 of the 9,564 reads to the sub-species level; however, Gist yields inferior per-

formance to NBC for both the 43,602 reads that map to the C. sp. ASF 356 genome and the 2,726 reads 

that map to the L. murinus ASF 361 genome. For both strains, the majority of reads appear to have been 

erroneously predicted by Gist as belonging to an unknown member of Bacteroides; this likely reflects 

Gist’s use of short k-mer signatures (codon bias, GC content etc.) compared to NBC’s reliance on closest 

matching long k-mer. 

 

Running time 

Table 3 lists wall time and CPU time requirements for each method on a single node with two eight-core 

Intel Xeon (Sandy Bridge) E5-2650 2.0 GHz CPUs and 64 GB of RAM. 100,000 synthetic reads of 100 

nt in length were used. Kaiju Greedy is the fastest method, requiring less than a minute of CPU time to 

achieve performance comparable to the results produced by NBC in 3.0 hours, which does not natively 

support multithreading. In total, Gist required 2090% of the CPU time used by NBC, but only 130% of 

actual (wall) time, due to multithreading. With the exception of Kaiju, execution time (Table 3) appears to 

directly correlate with the performance, in terms of sensitivity, reported in Figure 4A.  

Table 3. Classifier runtimes. 
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Classifier Wall time (s) CPU time (s) 
Kaiju Greedy 3 48 

Kaiju MEM 4 64 
Centrifuge 12 192 

CLARK 36 576 
Kraken 192 3072 

NBC 10801 10801 
Gist 14089 225424 

 

DISCUSSION 

Gist yields precision and sensitivity on-par or surpassing existing composition-based methods at a 

very short k-mer length by combining several sequence features. This enables Gist to obtain unprecedent-

ed sensitivity. Previous work has shown that amongst alignment-free techniques, the Naïve Bayes Classi-

fier (NBC) (Rosen et al. 2008) offers robust precision (Bazinet and Cummings 2012) and the best sensi-

tivity (Ounit et al. 2015). NBC uses only a single nucleotide naïve Bayes distribution to classify reads. To 

function with such accuracy comparatively large k-mers are required. This reliance can be problematic 

where environmental strains feature significant rates of sequence polymorphism with respect to genomes 

used for reference, which has driven interest in the use of so called gapped k-mers, also known as spaced 

seeds (Břinda et al. 2015; Ounit and Lonardi 2016). Both Kraken and CLARK have received gapped k-

mer versions of their algorithms, SEED-KRAKEN (Břinda et al. 2015) and CLARK-S (Ounit and 

Lonardi 2016) with varying results; while SEED-KRAKEN’s authors report substantial performance im-

provement over its antecedent, CLARK-S exhibits a smaller increase in sensitivity compared to CLARK. 

As another program, LMAT, also showed significant improvements when gapped k-mers were added 

(Břinda et al. 2015), it seems likely that CLARK’s novel database pruning methodology may be responsi-

ble for the discrepancy, as this pruning eliminates much of the data redundancy that might otherwise 

serve to make the program resilient to sequence polymorphisms; close orthologs may almost completely 

cancel out one another. Gist’s mixture of short (4–6 nt) and medium (9–15 nt) length k-mer methods cir-

cumvents the need for gapped k-mers, so even in the presence of strong sequence divergence, several of 
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its methods can identify forms of evidence for relationships between sequences, including non-

homologous genes from the same genome or niche, through properties like codon usage. 

Of the non-compositional methods we benchmarked against, Centrifuge and Kaiju, we found the 

results surprisingly divergent considering their closely related algorithms. Past methods that depend ex-

clusively on peptide sequence comparison, such as MetaCV, (Liu et al. 2013) have faced challenges in 

taxonomic classification because of the loss of clade-specific markers, particularly codon bias. This out-

come for Kaiju was anticipated by the results shown in Figure 2, where Centrifuge exhibits higher strain-

level sensitivity, but the final performance in Figure 4A was comparable to NBC and Gist, and, at some 

ranks, superior. It seems likely that Kaiju’s Greedy method represents a good compromise between the 

exactness of pure long k-mer methods like CLARK and Kraken, and the more fault-tolerant medium-

length approach shown by NBC. Centrifuge’s exclusive use of nucleotide sequences, as well as its re-

quirement of a 16 nt starting seed, likely result in a limited ability to make assignments in the absence of 

closely related reference genomes. 

In general, compositional classifiers for metagenomic taxonomy assignments implement a single 

machine learning technique: RITA (MacDonald et al. 2012), NBC (Rosen et al. 2008), Kraken (Wood 

and Salzberg 2014), and CLARK (Ounit et al. 2015) all rely on NB; TACOA (Diaz et al. 2009) uses k-

nearest neighbors (kNN); MetaCV (Liu et al. 2013) uses a modified protein-based HMM; and 

Phymm/PhymmBL (Brady and Salzberg 2009) exploit weighted averages of Markov models, called in-

terpolated Markov models. While RDP, a short-fragment taxonomic classifier (Cole 2004), combines 

both NB and kNN, its use is restricted to classification of ribosomal RNA fragments. To our knowledge, 

Gist is the first short read classifier that combines many approaches within a single unified model. 

Uniquely, Gist additionally adopts weights on a per-genome basis to better capture distinct features asso-

ciated with individual genomes resulting in weighting schemes that optimize the ability of each method to 

discriminate between genomes. This improves Gist’s flexibility over an unweighted model in accommo-

dating the complexity of genetic composition without succumbing to the type of over-fitting one would 
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expect from a strictly instance-based technique, such as pure kNN, while also avoiding the cost of training 

a powerful discriminatory method such as a support vector machine to accommodate every new classifier 

category. 

A further advantage of Gist over many taxonomic classifiers is the reporting of taxonomic as-

signments only at the rank that is supported by the underlying model. This design feature was introduced 

based on an appreciation that different lineages evolve at different rates. Unlike other classifiers, such as 

RITA, which identifies uniform taxonomic groupings based on user defined thresholds (MacDonald et al. 

2012), Gist outputs labels for short reads that may be usefully exploited for the purpose of intuiting taxo-

nomic groupings. Thus, the decision of whether to assign a read to a parent or child taxon is determined 

from the probability of assignments to each of the child taxa; reads receiving equal probabilities to two 

child taxa are assigned at the level of the parent. Importantly, such assignments are made without any as-

sumption about relative branch length between each child and its parent; this decreases the likelihood of 

errors that may arise from instances of horizontal transfer or atypical mutation rates, as associated, for 

example, with genes under strong selective pressures (Tamames and Moya 2008; Abby and Daubin 

2007). Such problems are commonly encountered in the clustering of 16S rRNA data, where taxa of high 

genetic diversity may be partitioned depending on sequence input order (He et al. 2015; Westcott and 

Schloss 2015). 

The availability of 16S rRNA data that define community members can greatly reduce search 

space for metatranscriptomic classification, thereby minimizing errors (Rosen et al. 2008). Such data may 

not always be available. Gist supports the input of strain abundance data from external sources during 

classification, allowing the operator to guide taxonomic assignments on the basis of available prior 

knowledge, a key strength of its partially Bayesian framework. 

Many recent methods, including Kraken, CLARK, Kaiju, and Centrifuge, emphasize conservative 

running times. Gist’s high running time requirements (Table 3) oppose this trend. With the exception of 
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Kaiju, however, these comparatively quick methods have not achieved levels of sensitivity on par with 

NBC, which is also noted as being relatively slow. As Kaiju does not use compositional data to perform 

classifications, it cannot assign genes to taxa unless such relationships have already been directly evi-

denced in existing databases, a challenge that is readily addressed by algorithms employing short k-mers. 

At the same time, short k-mer algorithms may lack the ability to discriminate between closely related ge-

nomes, requiring the supplementation of additional methods. While we acknowledge that the implementa-

tion of our ensemble methodology results in long runtimes, given the importance of assigning critical 

functions to key taxa, we nevertheless consider it imperative to emphasize the need to prioritize accuracy 

over speed of execution. Improving Gist’s efficiency is a primary goal for future development work, with 

the stipulation that its generalization ability not be sacrificed. 

  Taxonomic classifiers, like many kinds of bioinformatics programs, often have a limited post-

release development cycle, as they are rapidly succeeded by new methods. Many cease development 

shortly after publication. One unfortunate consequence of this is that the databases offered with these pro-

grams eventually become outdated, complicating comparisons in typical usage scenarios. This under-

scores the importance of confidence metrics; k-mer and alignment methods lacking a minimum confi-

dence score may assign data to spurious, unrelated taxa based on very small amounts of evidence. While 

the authors of CLARK and Kraken have made some efforts to consider the reporting of confidence levels, 

CLARK, Kraken, and Centrifuge ensure their results primarily by being very cautious about the assign-

ments they make. This comes at the cost of leaving most of the data unconsidered when the database 

poorly represents the available sequences, as demonstrated in Figure 4A. Additionally, the newer pro-

grams considered in this paper (Kraken, CLARK, Centrifuge, and Kaiju) all provide utilities or detailed 

instructions for downloading new data directly from NCBI, ENSEMBL, or another central repository, 

although even this is not completely future-proof; on September 20, 2016, the NCBI’s FTP version of its 

repository of bacterial genomes, from which many tools traditionally instructed users to obtain data, un-

derwent reorganization, rendering older database construction methods incompatible. 
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To ensure that Gist does not become obsolete due to changes in available reference sequences, we 

are currently developing an efficient pipeline for updating and constructing both databases and training 

data tuned to the latest available information and the user’s needs. In addition, with Gist’s Bayesian infer-

ence framework for coordinating the outputs of its classifiers, it should be practical to integrate other se-

quence classification algorithms. Given the noteworthy performance of NBC and Kaiju, we are currently 

working on integration of these methods into the Gist pipeline. Gist (and associated tools, Lincomp and 

Genepuddle) is provided as open source software under the GNU General Public License, version 3.0, 

and is available for download on GitHub at https://github.com/rhetorica/gist, or from its website at 

http://compsysbio.org/gist. 

 

MATERIALS AND METHODS 

Data 

The sequenced reads used in this study are available from the NCBI Sequence Read Archive 

(http://www.ncbi.nlm.nih.gov/Traces/sra: SRX134834, SRX134840, SRX134842 for samples 501, 502, 

and 504, respectively.) For further details of sequence processing, see (Xiong et al. 2012). Genomes for 

inclusion in the synthetic data were selected by drawing from the 25 most abundant taxa found during 

16S rRNA analysis, and then pooling at the genus or family level. As the 16S analysis successfully de-

tected Mucispirillum schaedleri, a strain of this species was used directly, for a total of 285 strains. As no 

strains from the phylum Bacteroidetes were detected by 16S analysis, 9 Bacteroides and 1 Parabac-

teroides genomes were added. Flux Simulator (Griebel et al. 2012), an RNA-seq simulator program, was 

used to produce the synthetic read data, but as Flux Simulator is intended for use with a single genome, it 

was adapted for synthetic metatranscriptome generation using the GenePuddle frontend, described below. 

Using Genepuddle, 100 nt artificial mRNA reads were produced from the selected genomes, assuming 

uniform expression of all genes. Two synthetic datasets, the biased and unbiased datasets, were produced, 
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in both test and training versions; the biased datasets distributed the relative abundances of each of the 25 

taxa among their proxies, so that e.g. the 80 Streptococcus strains, which served as stand-ins for a single, 

minor, unsequenced Streptococcus strain, did not overwhelm the far more important single strain of Mu-

cispirillum; the unbiased datasets consisted of precisely 5000 reads per sample.  

Algorithm details 

Gist was implemented in C++ under GNU/Linux. Scanning for protein sequences was derived 

from FragGeneScan (Rho et al. 2010), and the t-test calculations in the output pass were implemented 

using ALGLIB (http://www.alglib.net). It incorporates four machine learning methods as classifiers (NB, 

1NN, GMM, and ECC), which are used in nucleotide, reverse-complement-nucleotide, and amino acid 

modes. Scores from the Burrows-Wheeler Aligner (BWA) are also considered, generated separately 

against each reference genome. 

BWA was chosen as an efficient method for identifying close or exact matches, minimizing false 

positive assignments. BWA was selected over other programs of its type due to its low memory usage and 

high accuracy when analyzing prokaryotic sequences (Shang et al. 2014). We did not consider protein 

alignments as they have limited taxonomic resolution (for example, contrast the performance of Centri-

fuge, a nucleotide-based MEM method, with that of Kaiju, a protein-based MEM method, in Figure 2) 

due to being unable to detect codon bias. With some normalization, the scores output by BWA are used 

directly in the ensemble model as if they were probabilities. 

Our nearest neighbor search (1NN) implementation is an instance-based method that determines 

the nearest known gene in each strain and reports the best distance from these genomes with a modified 

Euclidean metric. This differs from typical nearest neighbor methods, which usually pool all reference 

data together and return only a single result corresponding to the label of the closest data point among all 

genes in the reference set. In contrast with BWA, which is also effectively instance-based, 1NN is much 

more tolerant of rearrangements and short duplications, although it is vulnerable to missense mutations. 
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Like the BWA scores, the distances returned by the 1NN model are treated as probabilities after some 

modification; in this case, inversion (i.e. 1/𝑥). 

Naïve Bayes (NB), a popular algorithm for compositional taxonomic classifiers, works by assum-

ing the data is distributed according to a single multivariate distribution. In Gist, a multivariate Gaussian 

model is used. Gaussian NB is effective at determining the mean of the distribution (i.e. what typical 

genes from a genome look like), but does not perform well on outliers, and rapidly becomes oversaturated 

at smaller k. It may also fail when a genome has several large, distinctive subpopulations, corresponding 

to a true data distribution that is multimodal; in these cases, the mode of the Gaussian often falls in a re-

gion of low probability. 

Expectation–maximization (EM) is a randomized iterative algorithm used to fit model parameters 

in the presence of latent, or unknown, variables. A Gaussian mixture model (GMM) is used with EM to 

find the means and variances of multiple subpopulations of genes; the correspondence between each gene 

and its subpopulation is the latent variable. Consequently, we expect the GMM component to be most 

effective at modeling a given genome when the genome has recently undergone large-scale horizontal 

gene transfer from another source, has many genes that do not obey normal codon distributions (e.g. RNA 

genes), or if contains a large family of proteins with many paralogs. 

Expected co-delta correlation (ECC) is a novel technique that provides an efficient trade-off to 

the calculation of full covariance tables for Gaussian-based methods. It calculates the rates of co-

occurrence between pairs of k-mers within the read, and then compares this to the average rates for each 

genome. Because of this two-dimensional relation, ECC can encode motifs of longer lengths by connect-

ing k-mers found together in one gene to each other, even if these are discontiguous; for example, applied 

to translated protein sequences, it is able to identify amino acids most commonly found adjacent to disul-

fide bridges. For each transcript 𝑥⃑ in the genome, a co-delta table is generated, consisting of the contrasts 

of the squares of the frequencies of each k-mer, i.e.  
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C𝑖𝑗   =  �𝑥𝑖  −  𝑥𝑗�
2  ·  sgn(𝑥𝑖  −  𝑥𝑗) 

for each cell Cij on the M×M matrix C, where M is the number of dimensions; 4k for nucleotides and 20k 

for peptides. The result is an anti-symmetric matrix. These codelta tables are then averaged to get the ex-

pected codelta matrix for the entire genome (e.g. Figure 3C), and the pairwise difference of a read from 

the genome mean is then calculated to get the final distance. The average is weighted using the corre-

sponding NB method, so that genes closer to the genome’s mean contribute more than outliers. 

While each component excels at identifying key features representative of specific genomes, in-

dividually they are too simplistic to model the k-mer landscapes necessary for accurate classification. For 

example, ECC does not consider the background rate of each k-mer and must therefore be combined with 

other techniques to be effective. Consequently, a single-layered neural network, similar to logistic regres-

sion, is employed to determine the best combination of methods to describe each genome. This ensemble 

averaging approach significantly improves resolution power at short k-mer lengths compared to existing 

composition-based methods (MacDonald et al. 2012) operating under the same constraint; the resultant 

joint distribution more accurately represents the shape of each genome’s total gene population, and can 

better predict the expected compositional signatures of unknown genes from related strains, in large part 

due to the short k-mer lengths employed. 

 Generating the expected weights for each technique is performed during an initial bootstrapping 

process that is tailored to the dataset provided to the program. This requires synthetic data drawn from a 

distribution approximating the expected distribution of the real reads. To generate such data, we created a 

novel prokaryotic metatranscriptome simulation pipeline, Genepuddle. Obtaining the underlying distribu-

tion of taxa was accomplished using 16S rRNA counts, substituting genomes from adjacent genera and 

families when more precise species data were not available, as shown in Supplemental Table S1. While 

constructing a generic weight and class set incorporating all known genomes is feasible, a reduced dataset 

improves both speed and results by eliminating the consideration of irrelevant taxa. 
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Integration of classifier results to yield overall probabilities that a read derives from a given ge-

nome is accomplished with Bayesian inference: 

𝑝(𝑥|𝐺𝑐) = exp �� 𝑤𝑚𝑐 ln𝑝(𝑥|𝜃𝑚𝑐)
𝑚∈𝑄

� = �𝑝(𝑥|𝜃𝑚𝑐)𝑤𝑚𝑐

𝑚∈𝑄

 

where 𝑝(𝑥|𝐺𝑐) is the overall probability of the read 𝑥 originating from the genome 𝐺𝑐, 𝑤𝑚𝑐  is the learned 

weight from the neural network for method 𝑚 (from the set of methods 𝑄) and genome 𝑐, and 𝑝(𝑥|𝜃𝑚𝑐) 

is the probability of 𝑥 originating from genome 𝑐 modeled with method 𝑚 using parameters 𝜃𝑚𝑐, referred 

to as the raw score. For a single read, this is repeated for every genome in the dataset.  

To improve algorithm efficiency, in the first pass of the algorithm, 𝑄 contains only fast methods 

(BWA and nucleotide naïve Bayes) that are used to prune lower-scoring genomes from consideration. 

Subsequently, for each read, a reduced set, called the ‘shortlist,’ of no fewer than 𝐷 highest-scoring ge-

nomes are kept; 𝐷 is a user-defined quota. More than 𝐷 genomes may be included at this stage if there are 

many log-scores that fall within a certain fraction of the highest-scoring hit, e.g. the user may decide that, 

during the first pass, at least 𝐷 = 12 hits should be considered, or any hit that receives a log-score of at 

least 98% of the top score. 

The scores for these genomes are further refined in a second pass of the algorithm, with 𝑄 includ-

ing all supported methods. The shortlisting process is performed again, this time with more stringent 

threshold and quota values. The final output report is generated based on the second pass shortlist, using a 

recursive method which ensures that the program returns larger taxonomic units (i.e., less precise predic-

tions) if the best-scoring taxon appears to be drawn from the same distribution as its immediate relatives 

when subjected to a one-tailed t-test. This ensures that mutations at novel sites are correctly assigned to 

the closest known reference strain, while mutations in regions known to be highly diverse are placed more 

conservatively, i.e. being assigned at the species or genus level. 

Supporting utilities: Genepuddle and Lincomp 
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Flux Simulator (Griebel et al. 2012) was adapted to simulate metatranscriptomic datasets through 

a Python-based pipeline called Genepuddle. Genepuddle disables Flux Simulator’s eukaryote-specific 

features (poly-adenylation) and instructs the program to generate 100 nt unpaired Illumina-like reads with 

standard parameters for a list of species according to a known count profile. The result is a labeled artifi-

cial metatranscriptome in .FASTA format which is suitable for training and testing performance on any 

metatranscriptomic or metagenomic classifier. 

The Lincomp tool, implemented in C++, produces a rank-specific accuracy report, given two files 

consisting of sequence labels and taxonomic IDs, with one file serving as the guess and the other as the 

ground truth. Using the nodes.dmp and names.dmp files from NCBI’s Taxonomy database (Federhen 

2012) as its reference, or equivalently a collection of Gist profiles for each relevant genome, Lincomp 

determines the smallest taxonomic unit that the two input files have in common for each label; e.g. a 

guess of 562 (species Escherichia coli) and a true label of 984897 (unranked strain Shigella dysenteriae 

1) would return 543 (family Enterobacteriaceae). It also includes ‘taxonomic grep’ features, such as the 

ability to extract or delete a specified taxon and its descendants from an appropriately labeled FASTA 

file. 
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